

HCI434D/444D SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2 100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three phase rms sensing, forimproved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

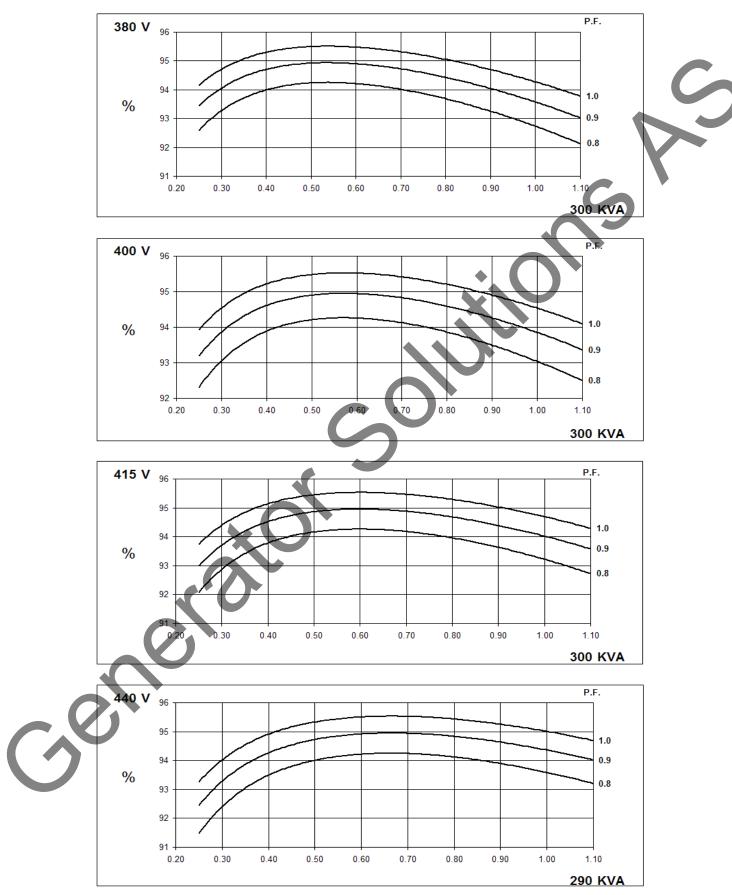
All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5° C by which the operational ambient temperature exceeds 40° C.

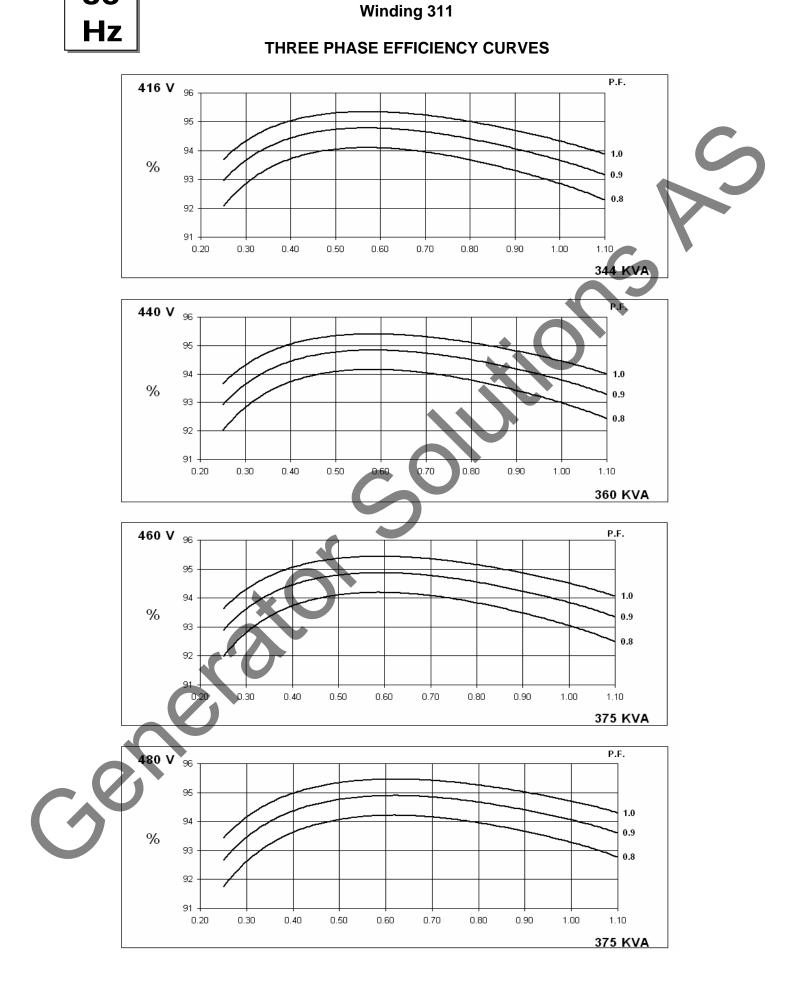
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.


NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing typical of product range.

WINDING 311

	-		DING 3								
CONTROL SYSTEM	SEPARATE	ELY EXCITE	D BY P.M.C) .							
A.V.R.	MX321	MX341									
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	IGINE GOV	ERNING						
SUSTAINED SHORT CIRCUIT	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)										
CONTROL SYSTEM	SELF EXCITED										
A.V.R.	AS440										
VOLTAGE REGULATION	± 1.0 % With 4% ENGINE GOVERNING										
SUSTAINED SHORT CIRCUIT	WILL NOT	SUSTAIN A	SHORT CI	RCUIT							
INSULATION SYSTEM											
PROTECTION		CLASS H IP23									
RATED POWER FACTOR					.8			_			
STATOR WINDING					.o AYER LAP		C				
WINDING PITCH											
WINDING LEADS					2						
STATOR WDG. RESISTANCE		0.0124.0	hms PER PH			STAP CON					
ROTOR WDG. RESISTANCE		0.0124 0		1.05 Ohm		STAR CON					
					at 22°C						
EXCITER STATOR RESISTANCE					PHASE AT	22°C					
R.F.I. SUPPRESSION		1000 6 0 9	BS EN 6100				or to footon	for others			
							•				
	N	IO LOAD <	1.5% NON-I		G BALANCE Rev/Min	ED LINEAR	LOAD < 5.0	%			
					317 (ISO)						
BEARING NON-DRIVE END	BALL. 6314 (ISO) 1 BEARING 2 BEARING										
					950 kg						
WEIGHT COMP. GENERATOR		94				950) ka				
			0 kg				0				
WEIGHT WOUND STATOR		41	0 kg 5 kg 1 kg			415) kg 5 kg 3 kg				
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR		413 36 4.077	5 kg 1 kg 1 kgm ²			415 338 3.8783	5 kg 3 kg 3 kgm ²				
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate		413 36 4.077 101	5 kg 1 kg 1 kgm ² 0 kg			415 338 3.878 101	5 kg 3 kg 3 kgm ² 0 kg				
WEIGHT COMP. GENERATOR WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE		413 36 4.077 101 155 x 87	5 kg 1 kg 1 kgm ² 0 kg x 107(cm)			415 338 3.878 101 155 x 87	5 kg 3 kg 3 kgm ² 0 kg x 107(cm)				
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE		411 36 4.077 101 155 x 87 50	5 kg 1 kg 1 kgm ² 0 kg x 107(cm)			415 338 3.878 101 155 x 87 60	5 kg 3 kg 3 kgm ² 0 kg x 107(cm) Hz				
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate		411 36 4.077 101 155 x 87 50 THF	5 kg 1 kg 1 kgm ² 0 kg x 107(cm)			415 338 3.878 101 155 x 87 60 TIF	5 kg 3 kg 3 kgm ² 0 kg x 107(cm)				
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR	380/220	413 36 4.077 101 155 x 87 50 THF	5 kg 1 kg 1 kg 2 kg 2 kg x 107(cm) 1 Hz 2 42%	440/254	416/240	415 338 3.878 101 155 x 87 60 TIF	5 kg 3 kg 3 kgm ² 0 kg x 107(cm) Hz <50	480/277			
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR	380/220 190/110	41: 36 4.077 101 155 x 87 50 THF 0.8 m³/sec	5 kg 1 kg 1 kg 0 kg x 107(cm) Hz - 42% c 1700 cfm	440/254 220/127	416/240 208/120	415 338 3.878 101 155 x 87 60 TIF 0.99 m³/se	5 kg 3 kg 3 kgm ² 0 kg x 107(cm) Hz <50 c 2100 cfm				
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA		411 36 4.077 101 155 x 87 50 THF 0.8 m³/sec 400/231	5 kg 1 kg 1 kg 2 kg x 107(cm) Hz 2 2% c 1700 cfm 415/240			415 338 3.878 101 155 x 87 60 TIF 0.99 m³/set 440/254	5 kg 3 kg 3 kg 3 kgm ² 0 kg x 107(cm) Hz <50 c 2100 cfm 460/266	240/138			
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA KVA BASE RATING FOR	190/110	411 36 4.077 101 155 x 87 50 THF 0.8 m ³ /sec 400/231 200/115	5 kg 1 kg 1 kg 0 kg x 107(cm) Hz - 2% c 1700 cfm 415/240 208/120	220/127	208/120	415 338 3.878 101 155 x 87 60 TIF 0.99 m³/se 440/254 220/127	5 kg 3 kg 3 kg ² 0 kg x 107(cm) Hz <50 c 2100 cfm 460/266 230/133	240/138			
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA kVA BASE RATING FOR REACTANCE VALUES	190/110 220/110	413 36 4.077 101 155 x 87 50 THF 0.8 m³/sec 400/231 200/115 230/115	5 kg 1 kg 1 kg 0 kg x 107(cm) Hz 27% c 1700 cfm 415/240 208/120 240/120	220/127 254/127	208/120 240/120	415 338 3.878 101 155 x 87 60 TIF 0.99 m³/see 440/254 220/127 254/127	5 kg 3 kg 3 kgm ² 0 kg x 107(cm) Hz <50 c 2100 cfm 460/266 230/133 266/133	240/138 277/138			
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR VOLTAGE SERIES STAR VOLTAGE SERIES DELTA KVA BASE RATING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS	190/110 220/110 300	411 36 4.077 101 155 x 87 50 THF 0.8 m³/sec 400/231 200/115 230/115 300	5 kg 1 kg 1 kg 0 kg x 107(cm) Hz 2 2% 2 1700 cfm 415/240 208/120 240/120 300	220/127 254/127 290	208/120 240/120 344	41! 338 3.878: 101 155 x 87 60 TIF 0.99 m³/sec 440/254 220/127 254/127 360	5 kg 3 kg 3 kgm ² 0 kg x 107(cm) Hz <50 c 2100 cfm 460/266 230/133 266/133 375	240/138 277/138 375			
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA VOLTAGE SERIES DELTA KVA BASE RATING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS TRANSIENT	190/110 220/110 300 3.16	413 36 4.077 101 155 x 87 50 THF 0.8 m³/sec 400/231 200/115 230/115 300 2.85	5 kg 1 kg 1 kg 0 kg x 107(cm) Hz - 72% - 1700 cfm 415/240 208/120 240/120 300 2.65	220/127 254/127 290 2.28	208/120 240/120 344 3.60	415 338 3.878 101 155 x 87 60 TIF 0.99 m³/sec 440/254 220/127 254/127 360 3.37	5 kg 3 kg 3 kg 2 kg 2 kg 2 107(cm) Hz <50 c 2100 cfm 460/266 230/133 266/133 375 3.21	240/138 277/138 375 2.95			
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA KVA BASE RATING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS SUBTRANSIENT X'd DIR. AXIS SUBTRANSIENT Xq QUAD. AXIS REACTANCE	190/110 220/110 300 3.16 0.20	411 36 4.077 101 155 x 87 50 THF 0.8 m³/sec 400/231 200/115 230/115 300 2.85 0.18 0.13 2.40	5 kg 1 kg 1 kg 2 kg x 107(cm) 415/240 208/120 240/120 300 2.65 0.17	220/127 254/127 290 2.28 0.15	208/120 240/120 344 3.60 0.22	415 3.878 3.878 101 155 x 87 60 TIF 0.99 m³/sec 440/254 220/127 254/127 360 3.37 0.21 0.14 2.89	5 kg 3 kg 3 kg 2 kg 2 kg 2 107(cm) Hz <50 c 2100 cfm 460/266 230/133 266/133 375 3.21 0.20	240/138 277/138 375 2.95 0.18			
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA KVA BASE RATING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS SUBTRANSIENT X'd OLR. AXIS SUBTRANSIENT Xq QUAD. AXIS REACTANCE X''q QUAD. AXIS SUBTRANSIENT	190/110 220/110 300 3.16 0.20 0.14 2.66 0.39	413 36 4.077 101 155 x 87 50 THF 0.8 m ³ /sec 400/231 200/115 230/115 300 2.85 0.18 0.13 2.40 0.36	5 kg 1 kg 1 kg 0 kg x 107(cm) Hz 2% c 1700 cfm 415/240 208/120 240/120 300 2.65 0.17 0.12 2.23 0.33	220/127 254/127 290 2.28 0.15 0.10 1.92 0.28	208/120 240/120 344 3.60 0.22 0.15 3.09 0.40	415 338 3.878 101 155 x 87 60 TIF 0.99 m³/se 440/254 220/127 254/127 360 3.37 0.21 0.14 2.89 0.38	5 kg 3 kg 3 kg 2 kg 2 kg 2 107(cm) Hz <50 c 2100 cfm 460/266 230/133 266/133 375 3.21 0.20 0.14 2.75 0.36	240/138 277/138 375 2.95 0.18 0.12 2.53 0.33			
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA KVA BASE RATING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS SUBTRANSIENT X'd QUAD. AXIS REACTANCE X'q QUAD. AXIS SUBTRANSIENT XL LEAKAGE REACTANCE	190/110 220/110 300 3.16 0.20 0.14 2.66 0.39 0.07	41: 36 4.077 101 155 x 87 50 THF 0.8 m ³ /sec 400/231 200/115 230/115 300 2.85 0.18 0.13 2.40 0.36 0.06	5 kg 1 kg 1 kg 2 kg x 107(cm) 415/240 208/120 240/120 300 2.65 0.17 0.12 2.23 0.33 0.06	220/127 254/127 290 2.28 0.15 0.10 1.92 0.28 0.05	208/120 240/120 344 3.60 0.22 0.15 3.09 0.40 0.09	415 338 3.878 101 155 x 87 60 TIF 0.99 m³/set 440/254 220/127 254/127 360 3.37 0.21 0.14 2.89 0.38 0.09	5 kg 3 kg 3 kg 2 kg 2 kg 2 kg 2 107(cm) Hz <50 c 2100 cfm 460/266 230/133 266/133 375 3.21 0.20 0.14 2.75 0.36 0.08	240/138 277/138 375 2.95 0.18 0.12 2.53 0.33 0.07			
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR VOLTAGE SERIES DELTA KVA BASE RATING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS SUBTRANSIENT X'd DIR. AXIS SUBTRANSIENT Xq QUAD. AXIS SUBTRANSIENT XL LEAKAGE REACTANCE X2 NEGATIVE SEQUENCE	190/110 220/110 300 3.16 0.20 0.14 2.66 0.39 0.07 0.26	411 36 4.077 101 155 x 87 50 THF 0.8 m³/sec 400/231 200/115 230/115 300 2.85 0.18 0.13 2.40 0.36 0.06 0.24	5 kg 1 kg 1 kg 0 kg x 107(cm) Hz 2 2% 2 1700 cfm 415/240 208/120 240/120 300 2.65 0.17 0.12 2.23 0.33 0.06 0.22	220/127 254/127 290 2.28 0.15 0.10 1.92 0.28 0.05 0.19	208/120 240/120 344 3.60 0.22 0.15 3.09 0.40 0.09 0.28	41! 338 3.878: 101 155 x 87 60 TIF 0.99 m³/see 440/254 220/127 254/127 360 3.37 0.21 0.14 2.89 0.38 0.09 0.27	5 kg 3 kg 3 kg 3 kgm ² 0 kg x 107(cm) Hz <50 c 2100 cfm 460/266 230/133 266/133 375 3.21 0.20 0.14 2.75 0.36 0.08 0.25	240/138 277/138 375 2.95 0.18 0.12 2.53 0.33 0.07 0.23			
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA KVA BASE RATING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS SUBTRANSIENT X'd DIR. AXIS SUBTRANSIENT X'q QUAD. AXIS SUBTRANSIENT XL LEAKAGE REACTANCE X2 NEGATIVE SEQUENCE	190/110 220/110 300 3.16 0.20 0.14 2.66 0.39 0.07 0.26 0.10	411 36 4.077 101 155 x 87 50 THF 0.8 m³/sec 400/231 200/115 230/115 300 2.85 0.18 0.13 2.40 0.36 0.06 0.24 0.09	5 kg 1 kg 1 kg 0 kg x 107(cm) Hz 2 72% 2 1700 cfm 415/240 208/120 240/120 300 2.65 0.17 0.12 2.23 0.33 0.06 0.22 0.08	220/127 254/127 290 2.28 0.15 0.10 1.92 0.28 0.05 0.19 0.07	208/120 240/120 344 3.60 0.22 0.15 3.09 0.40 0.09 0.28 0.10	415 3.878 3.878 101 155 x 87 60 TIF 0.99 m³/sec 440/254 220/127 254/127 360 3.37 0.21 0.14 2.89 0.38 0.09 0.27 0.27 0.09	5 kg 3 kg 3 kg 3 kgm ² 0 kg x 107(cm) Hz <50 c 2100 cfm 460/266 230/133 266/133 375 3.21 0.20 0.14 2.75 0.36 0.08 0.25 0.09	240/138 277/138 375 2.95 0.18 0.12 2.53 0.33 0.07 0.23 0.08			
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR VOLTAGE SERIES DELTA KVA BASE RATING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS SUBTRANSIENT X"d DIR. AXIS SUBTRANSIENT X" QUAD. AXIS REACTANCE X" QUAD. AXIS SUBTRANSIENT XL LEAKAGE REACTANCE X2 NEGATIVE SEQUENCE REACTANCES ARE SATURAT	190/110 220/110 300 3.16 0.20 0.14 2.66 0.39 0.07 0.26 0.10	411 36 4.077 101 155 x 87 50 THF 0.8 m³/sec 400/231 200/115 230/115 300 2.85 0.18 0.13 2.40 0.36 0.06 0.24 0.09	5 kg 1 kg 1 kg 0 kg x 107(cm) Hz 2 2% 2 1700 cfm 415/240 208/120 240/120 300 2.65 0.17 0.12 2.23 0.33 0.06 0.22	220/127 254/127 290 2.28 0.15 0.10 1.92 0.28 0.05 0.19 0.07 PER UNIT A	208/120 240/120 344 3.60 0.22 0.15 3.09 0.40 0.09 0.28 0.10	415 3.878 3.878 101 155 x 87 60 TIF 0.99 m³/sec 440/254 220/127 254/127 360 3.37 0.21 0.14 2.89 0.38 0.09 0.27 0.27 0.09	5 kg 3 kg 3 kg 3 kgm ² 0 kg x 107(cm) Hz <50 c 2100 cfm 460/266 230/133 266/133 375 3.21 0.20 0.14 2.75 0.36 0.08 0.25 0.09	240/138 277/138 375 2.95 0.18 0.12 2.53 0.33 0.07 0.23 0.08			
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR VOLTAGE SERIES DELTA KVA BASE RATING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS SUBTRANSIENT X'd DIR. AXIS SUBTRANSIENT X'q QUAD. AXIS SUBTRANSIENT XL LEAKAGE REACTANCE X2 NEGATIVE SEQUENCE X0 ZERO SEQUENCE	190/110 220/110 300 3.16 0.20 0.14 2.66 0.39 0.07 0.26 0.10	411 36 4.077 101 155 x 87 50 THF 0.8 m ³ /sec 400/231 200/115 230/115 300 2.85 0.18 0.13 2.40 0.36 0.06 0.24 0.09	5 kg 1 kg 1 kg 0 kg x 107(cm) Hz 2 2% 2 1700 cfm 415/240 208/120 240/120 300 2.65 0.17 0.12 2.23 0.33 0.06 0.22 0.08	220/127 254/127 290 2.28 0.15 0.10 1.92 0.28 0.05 0.19 0.07 PER UNIT A 0.0 0.07	208/120 240/120 344 3.60 0.22 0.15 3.09 0.40 0.09 0.28 0.10 T RATING A D8s 19s	415 3.878 3.878 101 155 x 87 60 TIF 0.99 m³/sec 440/254 220/127 254/127 360 3.37 0.21 0.14 2.89 0.38 0.09 0.27 0.27 0.09	5 kg 3 kg 3 kg 3 kgm ² 0 kg x 107(cm) Hz <50 c 2100 cfm 460/266 230/133 266/133 375 3.21 0.20 0.14 2.75 0.36 0.08 0.25 0.09	2.95 0.18 0.12 2.53 0.33 0.07 0.23 0.08			
WEIGHT WOUND STATOR WEIGHT WOUND ROTOR WR ² INERTIA SHIPPING WEIGHTS in a crate PACKING CRATE SIZE TELEPHONE INTERFERENCE COOLING AIR VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA KVA BASE RATING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS SUBTRANSIENT X''d DIR. AXIS SUBTRANSIENT X''d QUAD. AXIS REACTANCE X''Q QUAD. AXIS REACTANCE X''Q QUAD. AXIS SUBTRANSIENT XL LEAKAGE REACTANCE X2 NEGATIVE SEQUENCE REACTANCES ARE SATURAT T'd TRANSIENT TIME CONST.	190/110 220/110 300 3.16 0.20 0.14 2.66 0.39 0.07 0.26 0.10	411 36 4.077 101 155 x 87 50 THF 0.8 m ³ /sec 400/231 200/115 230/115 300 2.85 0.18 0.13 2.40 0.36 0.06 0.24 0.09	5 kg 1 kg 1 kg 0 kg x 107(cm) Hz 2 2% 2 1700 cfm 415/240 208/120 240/120 300 2.65 0.17 0.12 2.23 0.33 0.06 0.22 0.08	220/127 254/127 290 2.28 0.15 0.10 1.92 0.28 0.05 0.19 0.07 PER UNIT A 0.0 0.07 0.07 0.01 0.07 0.01 0.07 0.01 0.07 0.01 0.07 0.01 0.01	208/120 240/120 344 3.60 0.22 0.15 3.09 0.40 0.09 0.28 0.10 T RATING A 08s	415 3.878 3.878 101 155 x 87 60 TIF 0.99 m³/sec 440/254 220/127 254/127 360 3.37 0.21 0.14 2.89 0.38 0.09 0.27 0.27 0.09	5 kg 3 kg 3 kg 3 kgm ² 0 kg x 107(cm) Hz <50 c 2100 cfm 460/266 230/133 266/133 375 3.21 0.20 0.14 2.75 0.36 0.08 0.25 0.09	240/138 277/138 375 2.95 0.18 0.12 2.53 0.33 0.07 0.23 0.08			

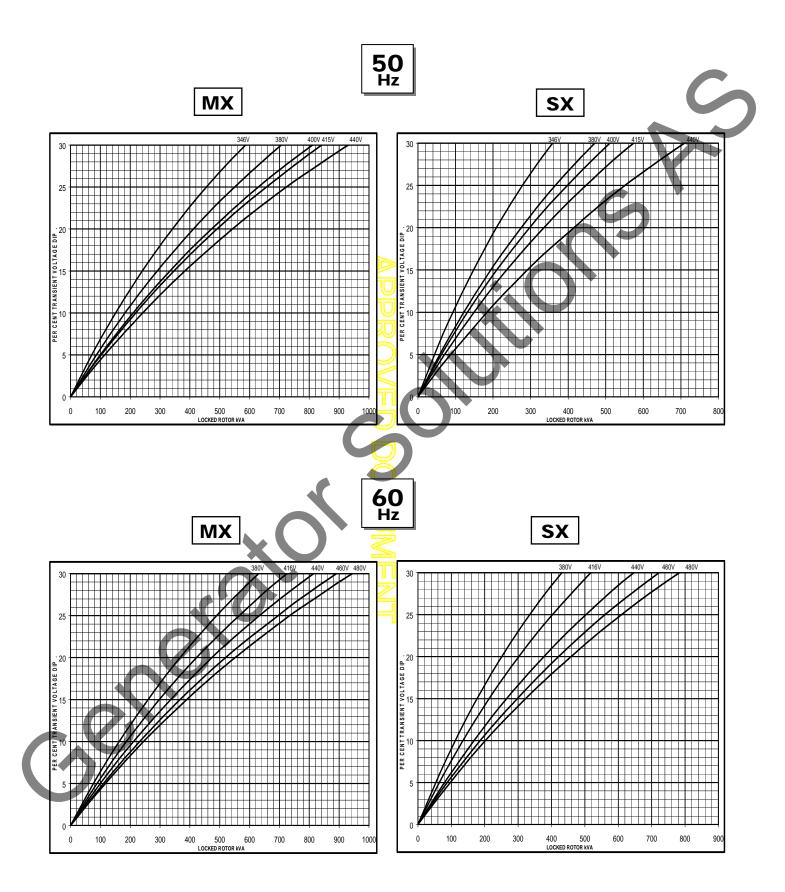

STAMFORD

Winding 311

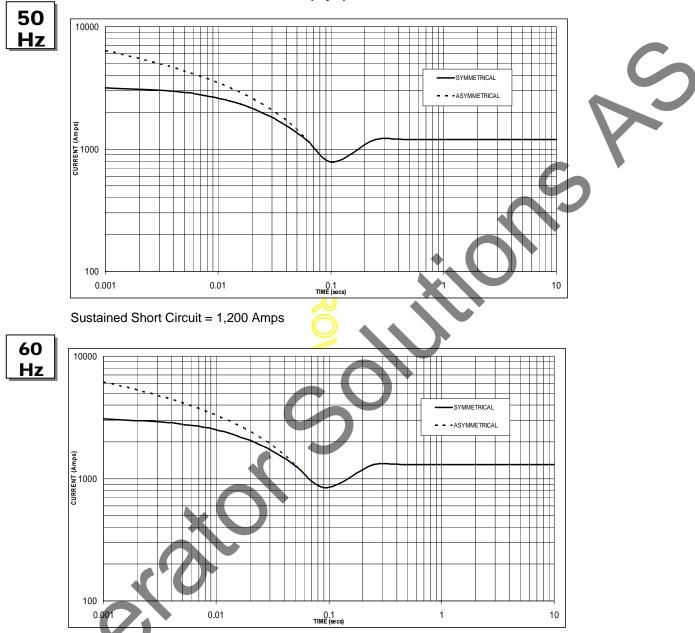
THREE PHASE EFFICIENCY CURVES

Hz

50


60

STAMFORD


Winding 311

Locked Rotor Motor Starting Curve

HCI434D

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	X 1.00	416v	X 1.00				
400v	X 1.05	440v	X 1.06				
415v	X 1.09	460v	X 1.10				
440v	X 1.16	480v	X 1.15				
The eveteine	امريع معتقد الم	un in compton					

The sustained current value is constant irrespective of voltage level

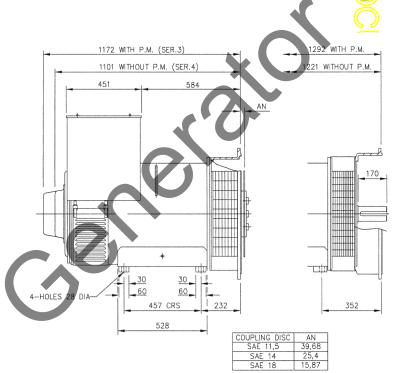
Note 2

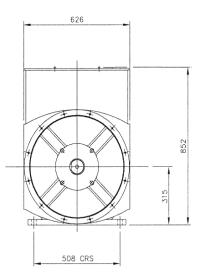
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N					
Instantaneous	x 1.00	x 0.87	x 1.30					
Minimum	x 1.00	x 1.80	x 3.20					
Sustained	x 1.00	x 1.50	x 2.50					
Max. sustained duration	10 sec.	5 sec.	2 sec.					
All other times are unchanged								

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :




Winding 311 / 0.8 Power Factor

RATINGS

	Class - Temp Rise	С	ont. F -	105/40	°C	C	ont. H -	125/40	D°C	St	andby -	150/40)°C	Sta	andby -	163/27	°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	280	280	280	270	300	300	300	290	320	320	320	310	330	330	330	320
	kW	224	224	224	216	240	240	240	232	256	256	256	248	264	264	264	256
	Efficiency (%)	93.1	93.4	93.5	93.8	92.7	93.0	93.2	93.6	92.3	92.7	92.9	93.3	92.1	92.5	92.7	93.2
	kW Input	241	240	240	230	259	258	258	248	277	276	276	266	287	285	285	275
							<u>_</u>										
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
112	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	315	335	345	345	344	360	375	375	365	385	400	400	375	395	415	415
	kW	252	268	276	276	275	288	300	300	292	308	320	320	300	316	332	332
	Efficiency (%)	93.3	93.3	93.4	93.6	92.9	93. <mark>0</mark>	93.1	93.3	92.5	92.6	92.7	93.0	92.4	92.5	92.5	92.8
	kW Input	270	287	296	295	296	310	322	322	316	333	345	344	325	342	359	358

80,030 80,011

STAMFORD

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.