
STAMFORD

HCM434F - Winding 311

Technical Data Sheet

HCM434F

SPECIFICATIONS & OPTIONS

STANDARDS

Marine generators may be certified to Lloyds, DnV, Bureau Veritas, ABS, Germanischer-Lloyd or RINA. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX341 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) control system, and is standard on marine generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable fullload to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current

level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 50°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

NB Continuous development of our products entitles us to change specification details without notice. therefore they must not be regarded as binding.

Front cover drawing typical of product range.

HCM434F

WINDING 311

WINDING 311												
CONTROL SYSTEM SEPARATELY EXCITED BY P.M.G.												
A.V.R.	MX321	MX341										
VOLTAGE REGULATION	± 0.5 %	± 0.5 % ± 1.0 % With 4% ENGINE GOVERNING										
SUSTAINED SHORT CIRCUIT	REFER TO	REFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)										
INSULATION SYSTEM	CLASS H											
PROTECTION		IP23										
RATED POWER FACTOR		0.8										
STATOR WINDING		DOUBLE LAYER LAP										
WINDING PITCH		TWO THIRDS										
WINDING LEADS		12										
STATOR WDG. RESISTANCE		0.0073 Ohms PER PHASE AT 22°C SERIES STAR CONNECTED										
ROTOR WDG. RESISTANCE				1.37 Ohm								
EXCITER STATOR RESISTANCE				18 Ohms								
EXCITER ROTOR RESISTANCE			0.068	Ohms PER		22°C						
R.F.I. SUPPRESSION	DC EN 6	1000 6 2 8	BS EN 6100			4	or to footomy	or others				
WAVEFORM DISTORTION			1.5% NON-I									
MAXIMUM OVERSPEED	IN IN	O LOAD <	1.376 INCIN-1		ev/Min	LD LINLAR	LOAD < 3.0	/0				
			10									
BEARING DRIVE END			- 10 -	'	317 (ISO)							
BEARING NON-DRIVE END		4.05	600	BALL. 63	314 (ISO)	0.05.	DINIO					
MEIGHT COMP. CENEDATOR		1 BEARING 2 BEARING										
WEIGHT COMP. GENERATOR		1160 kg 1160 kg										
WEIGHT WOUND STATOR		535 kg 535 kg 440 kg										
WEIGHT WOUND ROTOR					440 kg							
WR ² INERTIA			2 kgm²		5.2304 kgm ²							
SHIPPING WEIGHTS in a crate			0 kg		1230 kg							
PACKING CRATE SIZE		155 x 87	x 107(cm)		155 x 87 x 107(cm)							
		50	HZ		60 Hz							
TELEPHONE INTERFERENCE		THE	2%		TIF<50							
COOLING AIR			c 1700 cfm		0.99 m³/sec 2100 cfm							
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277				
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138				
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138				
kVA BASE RATING FOR REACTANCE VALUES	340	340	3 40	340	395	405	415	425				
Xd DIR. AXIS SYNCHRONOUS	2.31	2.09	1.94	1.72	2.85	2.61	2.45	2.30				
X'd DIR. AXIS TRANSIENT	0.15	0.14	0.13	0.11	0.16	0.14	0.13	0.13				
X"d DIR. AXIS SUBTRANSIENT	0.11	0.10	0.09	0.08	0.11	0.10	0.10	0.09				
Xq QUAD. AXIS REACTANCE X"q QUAD. AXIS SUBTRANSIENT	2.00 0.26	1.80 0.24	1.67 0.22	1.49 0.20	2.52 0.37	2.31 0.34	2.16 0.32	2.03 0.30				
XL LEAKAGE REACTANCE	0.26	0.24	0.22	0.20	0.06 0.06		0.32	0.05				
X2 NEGATIVE SEQUENCE	0.19	0.03	0.16	0.14	0.00	0.00	0.03	0.20				
X ₀ ZERO SEQUENCE	0.07	0.06	0.06	0.05	0.09	0.08	0.07	0.07				
REACTANCES ARE SATURA			LUES ARE F									
T'd TRANSIENT TIME CONST.				0.0)8s							
T"d SUB-TRANSTIME CONST.	0.019s											
W												

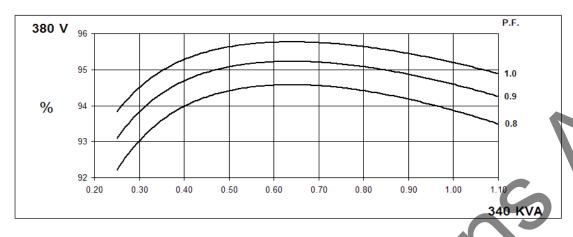
1.7s

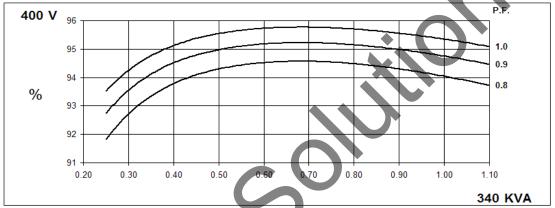
0.018s

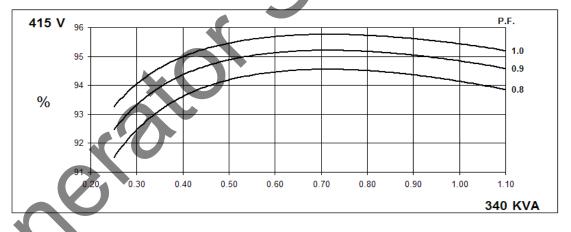
1/Xd

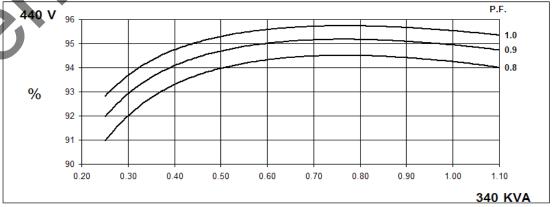
T'do O.C. FIELD TIME CONST.

Ta ARMATURE TIME CONST.

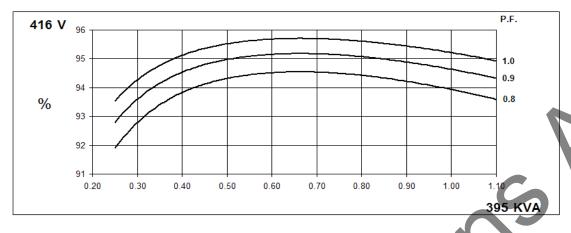

SHORT CIRCUIT RATIO

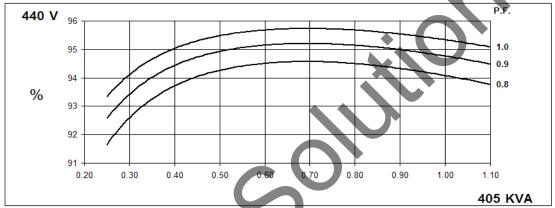

50 Hz

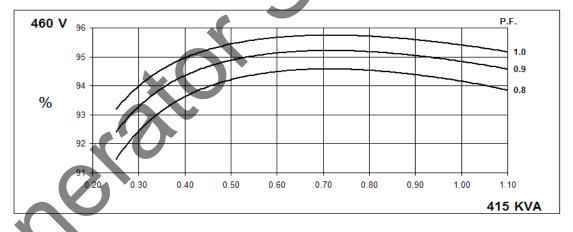

HCM434F Winding 311

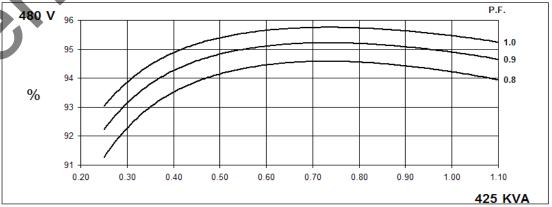

STAMFORD

THREE PHASE EFFICIENCY CURVES

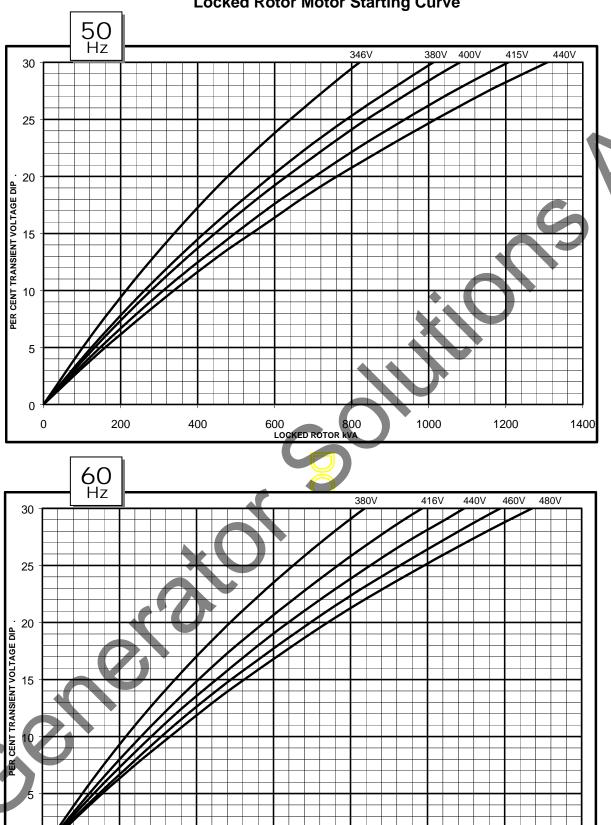



60 Hz

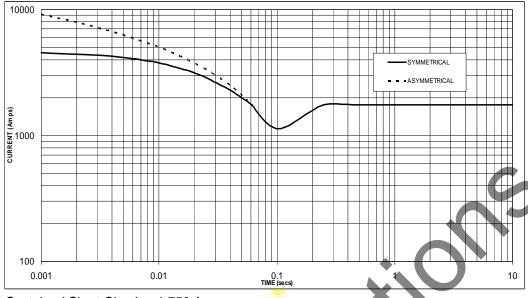

HCM434F Winding 311


STAMFORD

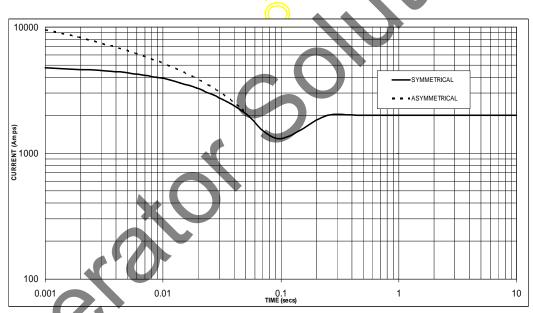
THREE PHASE EFFICIENCY CURVES



HCM434F Winding 311


Locked Rotor Motor Starting Curve

600 800 LOCKED ROTOR KVA


Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 1,750 Amps

Sustained Short Circuit = 2,000 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

	$\overline{}$								
	50	Hz	60Hz						
Г	Voltage	Factor	Voltage	Factor					
ſ	380v	X 1.00	416v	X 1.00					
Ţ	400v	X 1.05	440v	X 1.06					
Γ	415v	X 1.09	460v	X 1.10					
Γ	440v	X 1.16	480v	X 1.15					

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

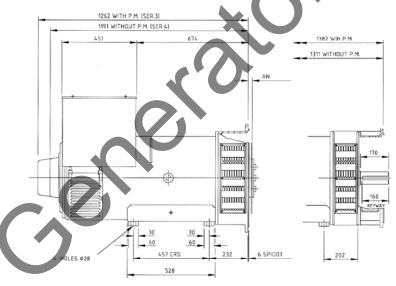
All other times are unchanged

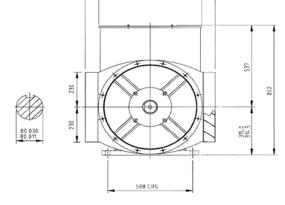
Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown:

Parallel Star = Curve current value X 2

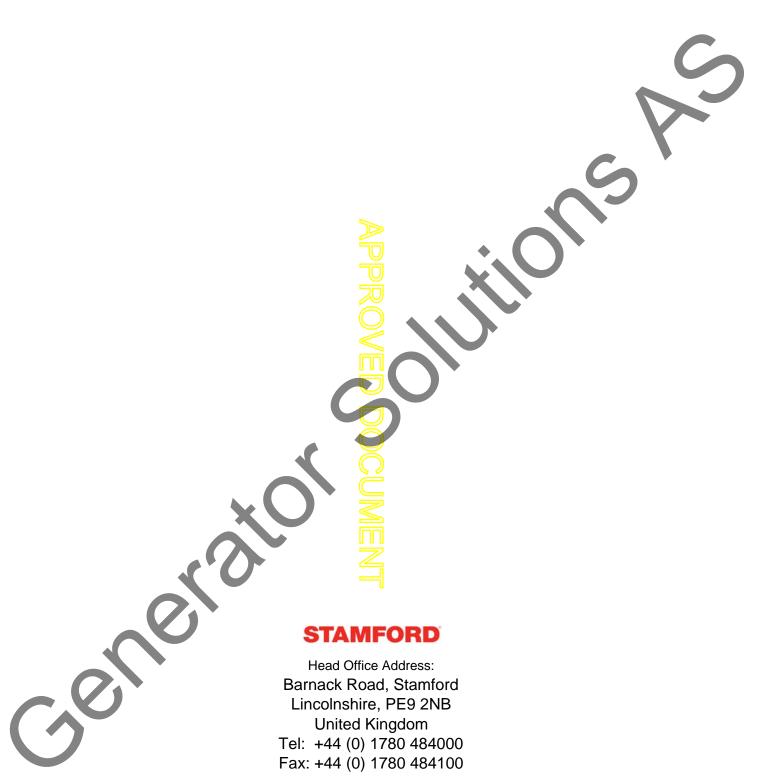
Series Delta = Curve current value X 1.732




HCM434F Winding 311 / 0.8 Power Factor

RATINGS

	Class - Temp Rise	С	Cont. E -	· 65/50°	С	С	ont. B -	70/50	°C	C	Cont. F	· 90/50°	C	Co	ont. H -	110/50	°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
ΠΖ	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	260	260	260	260	275	275	275	275	310	310	310	310	340	340	340	340
	kW	208	208	208	208	220	220	220	220	248	248	248	248	272	272	272	272
	Efficiency (%)	94.5	94.5	94.5	94.5	94.4	94.5	94.5	94.5	94.1	94.3	94.3	94.4	93.9	94.0	94.1	94.2
	kW Input	220	220	220	220	233	233	233	233	264	263	263	263	290	289	289	289
							<u> </u>										-
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Dorollol Ctor (\/)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	305	315	320	330	320	330	335	345	365	375	380	395	395	405	415	425
	kW	244	252	256	264	256	264	268	276	292	300	304	316	316	324	332	340
	Efficiency (%)	94.5	94.5	94.6	94.6	94.4	94.5	94.5	94.5	94.2	94.3	94.4	94.4	93.9	94.1	94.2	94.2
	kW Input	258	267	271	279	271	279	284	292	310	318	322	335	337	344	352	361


DIMENSIONS

770 LOUVRES

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.