
STAMFORD

HCM636G - Winding 312

Technical Data Sheet

STAMFORD

HCM636G

SPECIFICATIONS & OPTIONS

STANDARDS

Marine generators may be certified to Lloyds, DnV, Bureau Veritas, ABS, Germanischer-Lloyd or RINA. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

MX321 AVR - STANDARD

This sophisticated Automatic Voltage Regulator (AVR) is incorporated into the Stamford Permanent Magnet Generator (PMG) system and is fitted as standard to generators of this type.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

Over voltage protection is built-in and short circuit current level adjustment is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators feature a main stator with 6 ends brought out to the terminals, which are mounted on the frame at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria Bordon 6-2:2001. At no time will the ste ady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

10% when IP44 Filters are fitted.

for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

5% for every 5°C by which the operational ambient temperature exceeds 50°C.

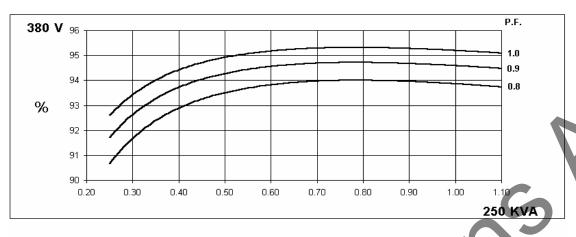
Note: Requirement for operating in an ambient temperature exceeding 60°C must be referred to the factory.

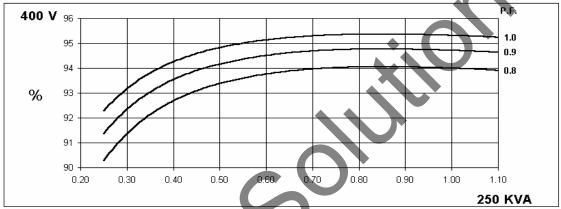
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

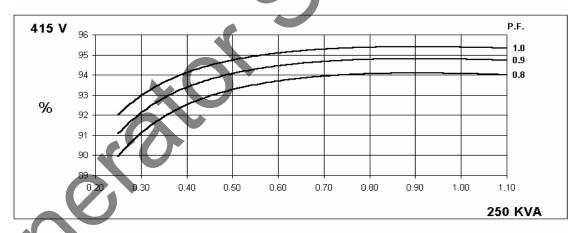
Front cover drawing typical of product range.

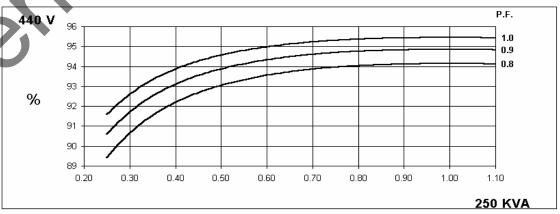
HCM636G

WINDING 312

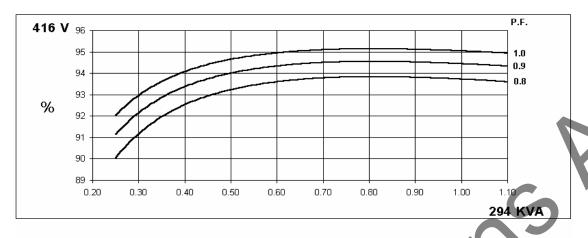

				_					
CONTROL SYSTEM	SEPARATI	LY EXCITE	D BY P.M.G	6.					
A.V.R.	MX321								
VOLTAGE REGULATION	± 0.5 %	With 4% EN	NGINE GOV	ERNING					
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CI	RCUIT DEC	REMENT C	JRVES (pag	ge 7)			
INSULATION SYSTEM				CLA	SS H				
PROTECTION				IP	23				
RATED POWER FACTOR		IP23 0.8							
STATOR WINDING		DOUBLE LAYER LAP							
WINDING PITCH					HIRDS				
WINDING LEADS					<u> </u>			Y	
STATOR WDG. RESISTANCE		0.00	9 Ohms PE			R CONNEC	TED		
ROTOR WDG. RESISTANCE				1.12 Ohm	s at 22°C			•	
EXCITER STATOR RESISTANCE				17 Ohms	at 22°C				
EXCITER ROTOR RESISTANCE			0.1	Ohms PER I	PHASE AT 2	22°C			
R.F.I. SUPPRESSION	BS EN 6	1000-6-2 &	BS EN 6100	0-6-4,VDE ()875G, VDE	0875N. refe	er to factory	for others	
WAVEFORM DISTORTION			1 <mark>.5%_</mark> NON-I						
MAXIMUM OVERSPEED					Rev/Min				
BEARING DRIVE END			- 10		224 (ISO)				
			- 10		<u> </u>				
BEARING NON-DRIVE END		4.05	KIND.	BALL. 6	317 (ISO)	0.05	NDINO		
WEIGHT COMP. OF MEDITOR			ARING				ARING		
WEIGHT COMP. GENERATOR			3 kg				1 kg		
WEIGHT WOUND STATOR			8 kg				6 kg		
WEIGHT WOUND ROTOR		_	4 kg	<u> </u>) kg		
WR ² INERTIA		15.476	3 kgm²			14.932	8 kgm²		
SHIPPING WEIGHTS in a crate		173	3 kg			170	1 kg		
PACKING CRATE SIZE		183 x 92	x 140(cm)			183 x 92	x 140(cm)		
		50	Hz			60	Hz		
TELEPHONE INTERFERENCE	•	THE	:< <mark>2</mark> %			TIF	<50		
COOLING AIR		1.614 m³/se	3420 cfm			1.961 m³/se	ec 4156 cfm		
VOLTAGE STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277	
VOLTAGE DELTA	220	230	2 40	254	240	254	266	277	
kVA BASE RATING FOR	250	250	250	250	294	313	313	313	
REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS	1.53	1.38		1.13	1.78	1.70	1.56	1.43	
X'd DIR. AXIS TRANSIENT	0.15	0.13	0.13	0.12	0.18	0.17	0.16	0.14	
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.09	0.12	0.12	0.12	0.11	
Xq QUAD. AXIS REACTANCE	1.04	0.94	0.88	0.79	1.19	1.14	1.05	0.96	
X"q QUAD. AXIS SUBTRANSIENT	0.13	0.12	0.12	0.10	0.15	0.14	0.13	0.12	
XL LEAKAGE REACTANCE	0.06	0.05	0.05	0.04	0.07	0.07	0.06	0.05	
X2 NEGATIVE SEQUENCE	0.13	0.12	0.11	0.10	0.15	0.14	0.13	0.12	
X0ZERO SEQUENCE REACTANCES ARE SATURA	0.09 TED	0.08	0.07 LUES ARE F	0.06	0.11	0.10	GE INDICA	0.08	
T'd TRANSIENT TIME CONST.	 	VAI	LULO AKE F		2 s	MIND VOLIA	OL INDICA	ובט	
T''d SUB-TRANSTIME CONST.					2 s 16 s				
T'do O.C. FIELD TIME CONST.	 				8 s				
Ta ARMATURE TIME CONST.					27 s				
SHORT CIRCUIT RATIO					Xd				

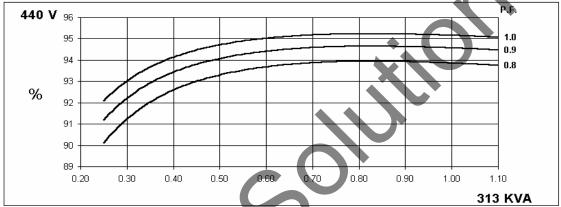

50 Hz

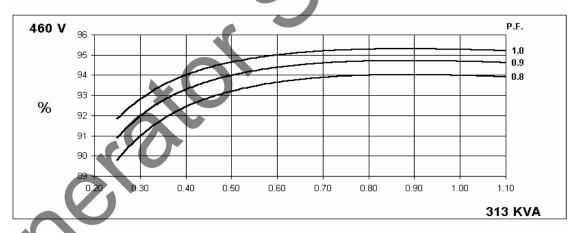

HCM636G Winding 312

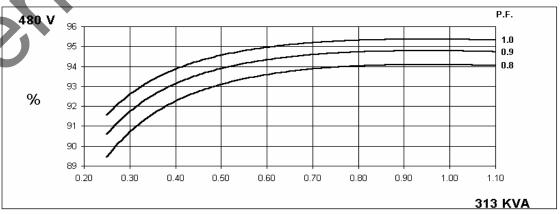

STAMFORD

THREE PHASE EFFICIENCY CURVES

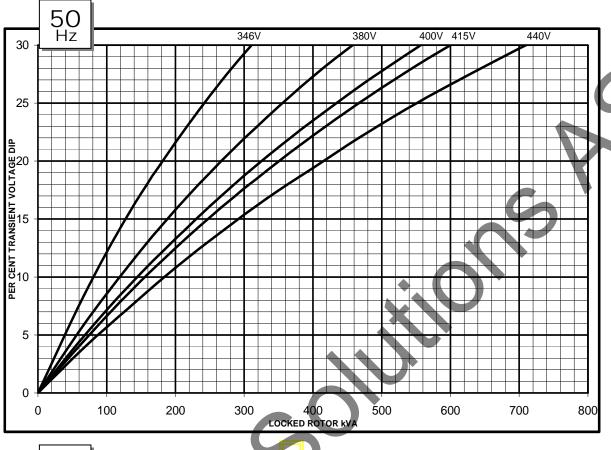


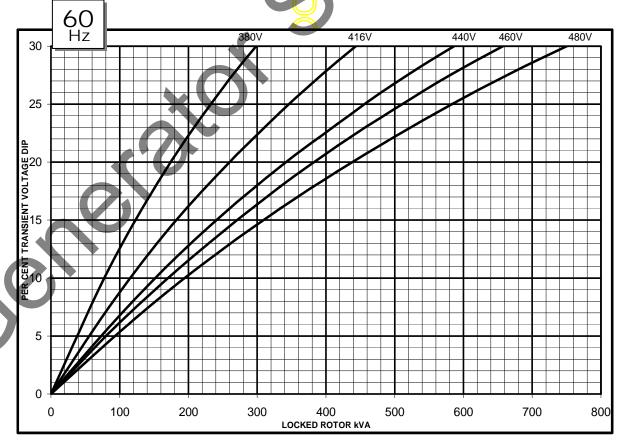

60 Hz


HCM636G Winding 312


STAMFORD

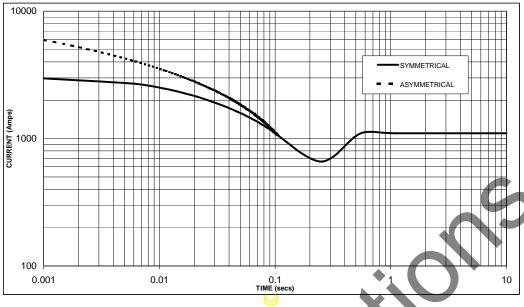
THREE PHASE EFFICIENCY CURVES





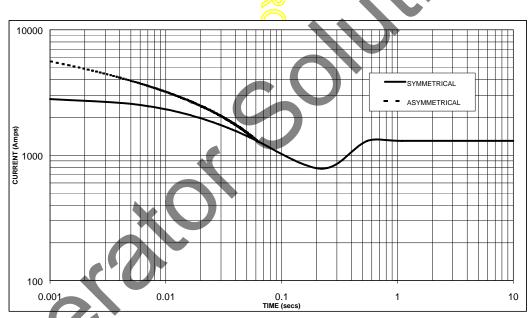
HCM636G Winding 312

Locked Rotor Motor Starting Curve


HCM636G

STAMFORD

Winding 312


Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 1,100 Amps

Sustained Short Circuit = 1,300 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

50	Hz	60	·lz		
Voltage	Factor	Voltage	Factor		
380v	X 1.00	416v	X 1.00		
400v	X 1.07	440v	X 1.06		
415v	X 1.12	460v	X 1.12		
440v	X 1.18	480v	X 1.17		

The sustained current value is constant irrespective of voltage level

Note 2

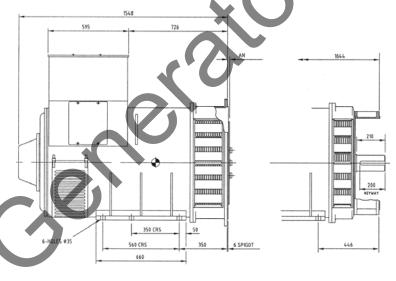
The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

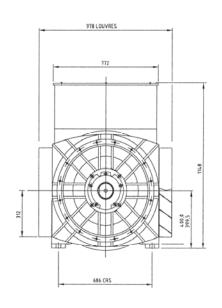
All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For Delta connection multiply the Curve current value by 1.732


HCM636G Winding 312 / 0.8 Power Factor

RATINGS


Class	s - Temp Rise	Cont. B - 70/50°C			Cont. F - 90/50°C				Cont. H - 110/50°C				
50 Hz	Star (V)	380	400	415	440	380	400	415	440	380	400	415	440
	Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	220	220	220	220	250	250	250	250	250	250	250	250
	kW	176	176	176	176	200	200	200	200	200	200	200	200
	Efficiency (%)	94.0	94.1	94.1	94.1	93.9	94.0	94.1	94.1	93.9	94.0	94.1	94.1
	kW Input	187	187	187	187	213	213	213	213	213	213	213	213

60 Hz	Star (V)	416	440	460	480	416	440	460	480	416	440	460	480
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	250	270	270	270	294	313	313	313	294	313	313	313
	kW	200	216	216	216	235	250	250	250	235	250	250	250
Effic	ciency (%)	93.8	93.9	94.0	94.1	93.7	93.9	94.0	94.1	93.7	93.9	94.0	94.1
	kW Input	213	230	230	230	251	267	266	266	251	267	266	266

COUPLING DISC	AN
SAE 14	25,4
SAE 18	15,87
SAE 21	0
CAE OI	

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.