
PI044D - Winding 311
Technical Data Sheet

PI044D

STAMFORD

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATOR

AS480 AVR fitted as STANDARD

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS480 will support limited accessories, RFI suppession remote voltage trimmer and for the P1 range only a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

The AVR is can be fitted to either side of the generator in its own housing in the non-drive end bracket.

Excitation Boost System (EBS) (OPTIONAL)

The EBS is a single, self-contained unit, attached to the non-drive end of the generator.

The EBS unit consists of the Excitation Boost Controller (EBC) and an Excitation Boost Generator (EBG). Under fault conditions, or when the generator is subjected to a large impact load such as a motor starting, the generator voltage will drop. The EBC senses the drop in voltage and engages the output power of the EBG. This additional power feeds the generator's excitation system, supporting the load until breaker discrimination can remove the fault or enable the generator to pick up a motor and drive the voltage recovery.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted at the non-drive end of the generator. Dedicated single phase generators are also available. A sheet steel terminal box contains provides ample space for the customers' wiring and gland arrangements. Alternative terminal boxes are available for customers who want to fit additional components in the terminal box.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION / IMPREGNATION

The insulation system is class 'H'.

JAII wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 9 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

5% For reverse rotation

(Standard rotation CW when viewed from DE)

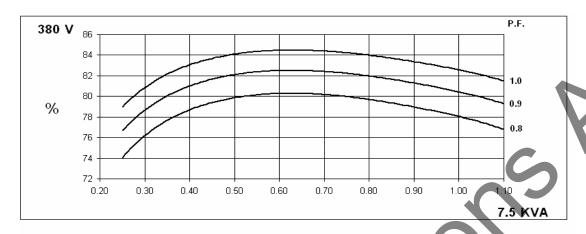
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

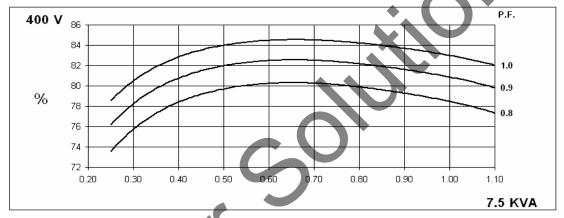
Front cover drawing typical of product range.

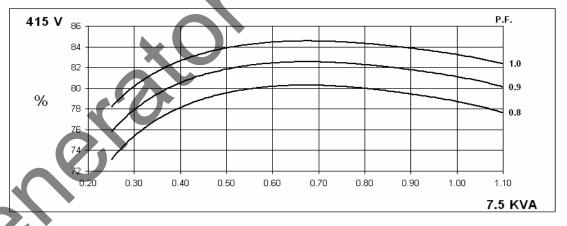
PI044D

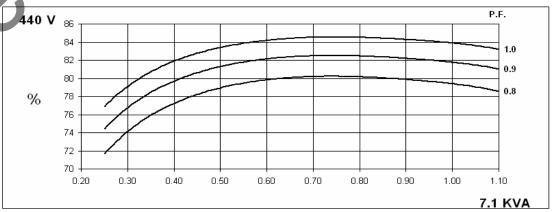
WINDING 311

		44114	DING 3					
CONTROL SYSTEM	STANDARD	AS480 AVI	R (SELF EXC	CITED)				
VOLTAGE REGULATION	± 1.0 %							
SUSTAINED SHORT CIRCUIT	SELF EXCI	TED MACHI	NES DO NO	T SUSTAIN	A SHORT C	IRCUIT CUF	RRENT	
CONTROL SYSTEM	AS480 AVR	WITH OPT	IONAL EXCI	TATION BO	OST SYSTE	M (EBS)		
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECR	EMENT CU	RVE (page 8	3)		
INSULATION SYSTEM				CLA	SS H		•	
PROTECTION				IP	23		,	
RATED POWER FACTOR				0	.8			Y
STATOR WINDING			DO	JBLE LAYE	R CONCENT	RIC		
WINDING PITCH	TWO THIRDS						·	
WINDING LEADS				1	2			
STATOR WDG. RESISTANCE		2.1 Oh	ms PER PH	ASE AT 22°0	SERIES S	TAR CONN	ECTED	
ROTOR WDG. RESISTANCE				0.437 Ohn	ns at 22°C			
EXCITER STATOR RESISTANCE			5	17.5 Ohm	s at 22°C	77	>	
EXCITER ROTOR RESISTANCE			0.21	Ohms PER	PHASE AT	22°C		
EBS STATOR RESISTANCE			-	12.9 Ohm	s at 22°C			
R.F.I. SUPPRESSION	BS FN	61000-6-2 &	BS EN 6100			0875N, refe	r to factory fo	or others
WAVEFORM DISTORTION			1,5% NON-					
MAXIMUM OVERSPEED					Rev/Min			
BEARING DRIVE END					- 2RS. (ISO)	1		
BEARING NON-DRIVE END			<u>u u u </u>		- 2RS. (ISO)			
BEARING NON-DRIVE END		1 BE /	ARING	BALL. 0300	- 21(3. (130)		ARING	
	WITH	EBS EBS		JT EBS	WITH	EBS		JT EBS
WEIGHT COMP. GENERATOR	75	kg	73.3		78	kg	76.3	kg
WEIGHT WOUND STATOR		kg		kg		kg		kg
WEIGHT WOUND ROTOR	26.32	1 -	24.61	ka	27.32	ka	25.62	ka
WR² INERTIA		kgm ²	0.0876		0.0895		0.0878	
SHIPPING WEIGHTS in a crate		kg	90.3	_	101	-	99.3	
PACKING CRATE SIZE			x 67 (cm)	9			x 67 (cm)	9
PAGAMAG GIATIE GIZE			Hz				Hz	
TELEPHONE INTERFERENCE			<2%;				<50	
COOLING AIR			sec 233cfm				ec 286 cfm	
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138
kVA BASE RATING FOR REACTANCE	7.5	7.5	7.5	7.1	8.3	8.8	9.1	9.4
VALUES Xd DIR. AXIS SYNCHRONOUS	1.62	1.46	1.36	1.14	1.94	1.84	1.74	1.65
X'd DIR. AXIS TRANSIENT	0.17	0.15	0.14	0.12	0.19	0.18	0.17	0.16
X'd DIR. AXIS SUBTRANSIENT	0.11	0.10	0.09	0.08	0.13	0.12	0.12	0.11
Xq QUAD. AXIS REACTANCE	0.78	0.70	0.65	0.55	0.93	0.88	0.83	0.79
X"q QUAD. AXIS SUBTRANSIENT	0.17	0.15	0.14	0.12	0.20	0.19	0.18	0.17
XLLEAKAGE REACTANCE X2 NEGATIVE SEQUENCE	0.07 0.14	0.06 0.13	0.06 0.12	0.05 0.10	0.07 0.17	0.07 0.16	0.06 0.15	0.06 0.14
X ₀ ZERO SEQUENCE	0.14	0.13	0.12	0.10	0.17	0.16	0.15	0.14
REACTANCES ARE SATURAT			LUES ARE					
T'd TRANSIENT TIME CONST.				0.0	06 s			
T"d SUB-TRANSTIME CONST.			-		02 s		-	
T'do O.C. FIELD TIME CONST.					5 s			
Ta ARMATURE TIME CONST.					07 s			
SHORT CIRCUIT RATIO				1/.	Xd			

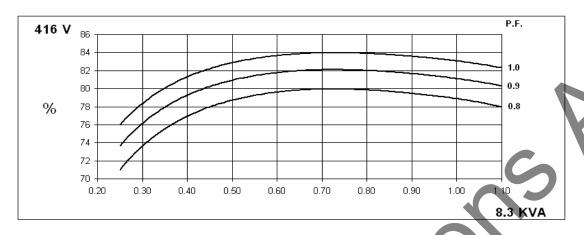

50 Hz

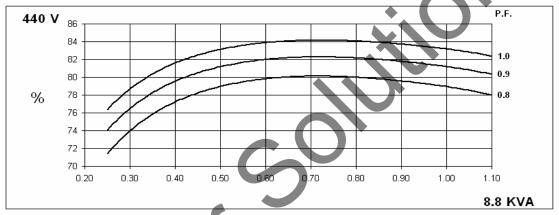

PI044D

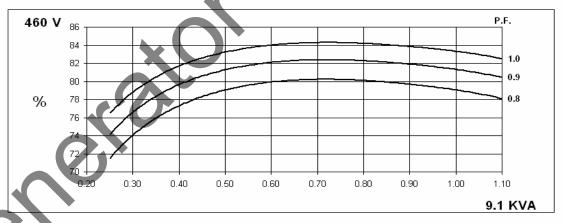

STAMFORD

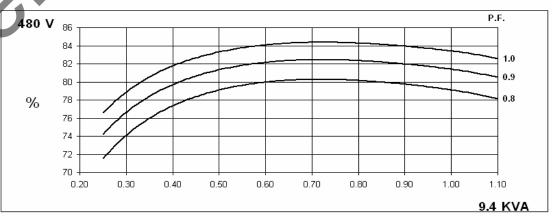

Winding 311

THREE PHASE EFFICIENCY CURVES

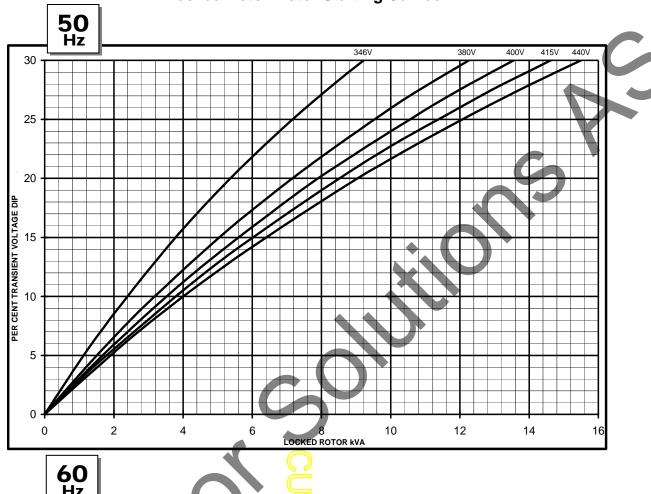

60 Hz

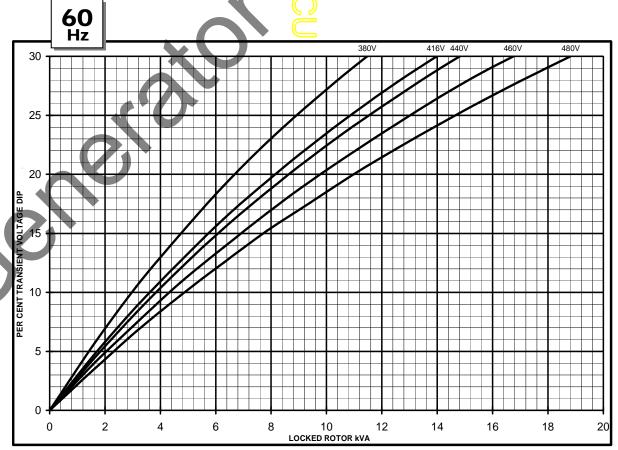

PIO44D


STAMFORD

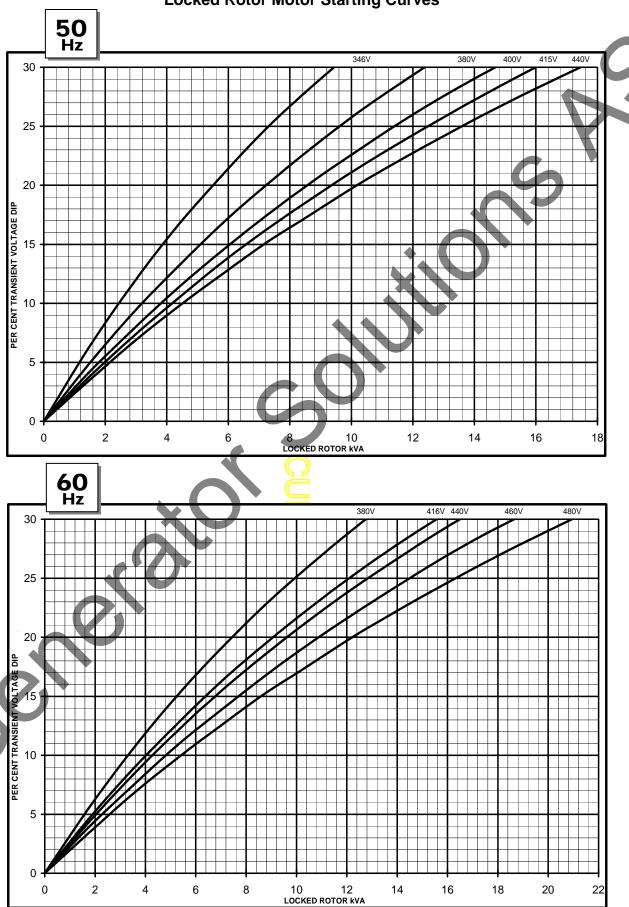

Winding 311

THREE PHASE EFFICIENCY CURVES



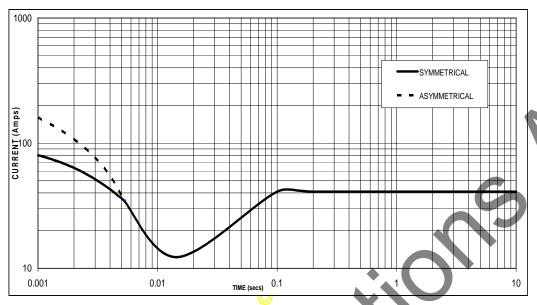


PI044D


Winding 311 AS480 AVR Without EBS Locked Rotor Motor Starting Curves

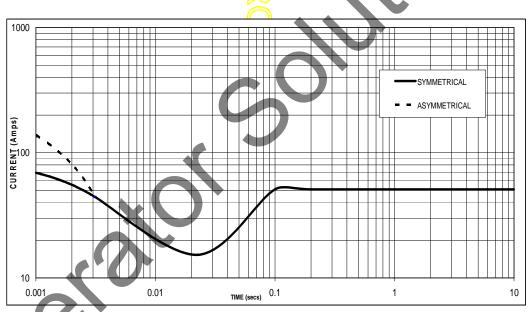
PI044D

Winding 311 AS480 AVR With EBS fitted Locked Rotor Motor Starting Curves


PI044D

STAMFORD

WITH EBS FITTED


Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

50 Hz

Sustained Short Circuit = 41 Amps

60 Hz

Sustained Short Circuit = 51 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

$\overline{}$						
50	Hz	60Hz				
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.05	440v	X 1.06			
415v	X 1.09	460v	X 1.10			
440v	X 1.16	480v	X 1.15			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

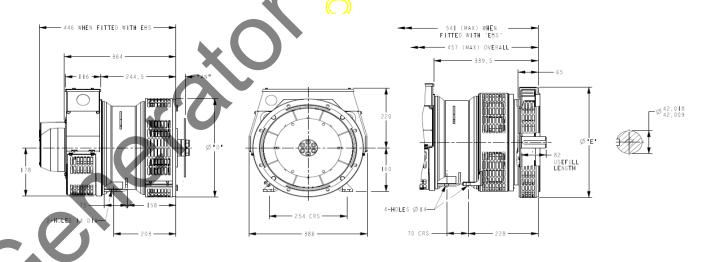
All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown:

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732


PI044D

Winding 311 / 0.8 Power Factor

RATINGS

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40)°C	St	andby -	- 150/40)°C	Sta	andby -	163/27	°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	6.8	6.8	6.8	6.5	7.5	7.5	7.5	7.1	8.1	8.1	8.1	7.7	8.3	8.3	8.3	7.8
	kW	5.4	5.4	5.4	5.2	6.0	6.0	6.0	5.7	6.5	6.5	6.5	6.2	6.6	6.6	6.6	6.2
	Efficiency (%)	79.0	79.3	79.5	79.9	78.0	78.5	78.7	79.4	77.1	77.7	78.0	78.8	76.8	77.4	77.7	78.7
	kW Input	6.9	6.9	6.8	6.5	7.7	7.6	7.6	7.2	8.4	8.3	8.3	7.8	8.6	8.6	8.5	7.9
										-							
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Darallal Star (\/)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	7.5	8.0	8.2	8.5	8.3	8.8	9.1	9.4	8.9	9.5	9.8	10.1	9.1	9.7	10.0	10.3
	kW	6.0	6.4	6.6	6.8	6.6	7.0	7.3	7.5	7.1	7.6	7.8	8.1	7.3	7.8	8.0	8.2
	Efficiency (%)	79.5	79.6	79.7	79.8	78.9	79.0	79.1	79.1	78.3	78.3	78.4	78.5	78.1	78.1	78.2	78.3
	kW Input	7.5	8.0	8.2	8.5	8.4	8.9	9.2	9.5	9.1	9.7	10.0	10.3	9.3	9.9	10.2	10.5

DIMENSIONS

	200PL N	NG DISC
	SAE	"AN"
١	6.5	30.2
	7.5	30.2
	8	62
	1.0	53.8
	11.5	39.6

I-BRG A	APAPTOR
SAE	Ø"D"
5	36 I
4	405
3	45 I
2	489

8-HOLES	SPACED	AS	12
8-HOLES	SPACED	AS	12

2-BRG A	APAPTOR
SAE	Ø "E"
5	359
4	406
3	455
2	493

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.